MATH 2050 - Field and order properties of \mathbb{R}
(Reference: Bartle §2.1)
Grand Thm: \mathbb{R} is a complete ordered field.
Field Properties $\begin{gathered}\text { analysis } \\ \text { (topology) }\end{gathered}$
Def n $=$ Thu: $(\mathbb{R},+, \cdot)$ is a field, ie.
\exists two operations $t: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \cdot: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ s.t. the following properties hold:

$$
\begin{aligned}
& +\left\{\begin{array}{l}
(A 1) \quad a+b=b+a \quad \forall a \cdot b \in \mathbb{R} \\
(A 2) \quad(a+b)+c=a+(b+c) \quad \forall a \cdot b \cdot c \in \mathbb{R} \\
(A 3) \exists 0 \in \mathbb{R} \text { s.t. } \quad 0+a=a=a+0 \quad \forall a \in \mathbb{R} \\
\text { (A4) } \forall a \in \mathbb{R} \cdot \exists-a \in \mathbb{R} \text { st. } a+(-a)=0=(-a)+a
\end{array}\right. \\
& \text { - }\left\{\begin{array}{l}
\text { (M1) } a \cdot b=b \cdot a \quad \forall a \cdot b \in \mathbb{R} \\
\text { (M2) }(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \forall a \cdot b \cdot c \in \mathbb{R} \\
\text { (M3) } \exists 1 \in \mathbb{R} \text { st. } 1 \neq 0 \text { and } 1 \cdot a=a=a \cdot 1 \quad \forall a \in \mathbb{R} \\
\text { (M4) } \forall a \in \mathbb{R} \cdot a \neq 0 \cdot \exists \frac{1}{a} \in \mathbb{R} \text { st. } \frac{1}{a} \cdot a=1=a \cdot \frac{1}{a} \forall a \in \mathbb{R}
\end{array}\right. \\
& +\left\{\begin{array}{l}
(D)-a \cdot(b+c)=a \cdot b+a \cdot c \quad \forall a \cdot b \cdot c \in \mathbb{R} \\
(b+c) \cdot a=b \cdot a+c \cdot a \quad \forall a \cdot b \cdot c \in \mathbb{R}
\end{array}\right.
\end{aligned}
$$

Note: The remaining algebraic properties can be deduced from the field properties above.

Define: $\quad a-b:=a+(-b)$, and if $b \neq 0, \frac{a}{b}:=a \cdot\left(\frac{1}{b}\right)$
Notation: $a^{n}:=\underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text { times }} ; a^{0}:=1 ; a^{-1}:=\frac{1}{a}$

Prop: "Cancellation Laws"
(1) $a+c=b+c \Rightarrow a=b$
(2) $\quad a c=b c, c \neq 0 \Rightarrow a=b$

Proof: (1)

$$
\begin{aligned}
a & =a+0 \\
& =a+(c+(-c)) \\
& =(a+c)+(-c) \\
& =(b+c)+(-c) \\
& =b+(c+(-c)) \\
& =b+0 \\
& =b
\end{aligned}
$$

(by (A3))
(by (A4))
(by (A2))
(by assumption)
(by (A2))
(by (A4))
(by $(A 3)$)
(2): Exercise. \qquad
Cor: The zero element O in (A3) is unique.
Proof: Suppose there are two zero elements $0,0^{\circ}$. Then

$$
\begin{array}{ll}
0=0+0^{\circ}=0^{\circ} & \text { i.e. } 0=0^{\prime} \\
0^{\circ}(A 3) & 0^{(A 3)}
\end{array}
$$

Exercise: 1 in (M3) is unique.
Exercise: The additive and multiplicative inverse in (A4) and (M4) are unique.

Prop: (1) $0 \cdot a=0 \quad \forall a \in \mathbb{R}$
(2) $a \cdot b=0 \Rightarrow a=0$ or $b=0$ (or both)
(3) $(-1) \cdot a=-a \quad \forall a \in \mathbb{R}$

Proof: (1) Consider

$$
\text { of: (1) Consider } 0 \cdot a \stackrel{(D)}{=}(0+0) \cdot a \stackrel{(A 3)}{=} 0 \cdot a \stackrel{(A 3)}{=} 0 \cdot a+0
$$

then by cancellation lan (1), we have $0 \cdot a=0$.
(2) Suppose $a \cdot b=0$.

Case i : $a=0 \quad \Rightarrow$ Done.
Case ii: $a \neq 0 \quad$ [Want: Prove $b=0$.]
Since $a \neq 0$. The inverse $\frac{1}{a} \in \mathbb{R}$ exists.

$$
a \cdot b=0=a \cdot 0
$$

By cancellation law (2), we have $b=0$.
(3) Want to show: $a+(-1) \cdot a=0$

Then, result follows from uniqueness of additive inverse " $-a$ ".

$$
\begin{aligned}
a+(-1) \cdot a & \stackrel{(M 3)}{=} 1 \cdot a+(-1) \cdot a \\
& \stackrel{(D)}{=}(1+(-1)) \cdot a \\
& \stackrel{(A 4)}{=} 0 \cdot a \stackrel{\text { by (1) }}{=} 0
\end{aligned}
$$

Remark: Other e.g. of fields $\mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p},\left\{\frac{\text { polynomials }}{\text { palgnomuido }}\right\} \ldots .$.

Goal: \mathbb{R} is a complete ordered field.

Ordering $m \rightarrow \mathbb{R}$ as a real line

Def/ Thu: $\exists \phi \neq \mathbb{P}:=\{$ "positive" real numbers $\} \subseteq \mathbb{R}$ s.t.
(01): $a, b \in \mathbb{P} \Rightarrow a+b, a b \in \mathbb{P}$
(02): Trichotomy: $\forall a \in \mathbb{R}$, one and only one of the following holds:

$$
a \in \mathbb{P} \text { or } a=0 \text { or }-a \in \mathbb{P}
$$

Notation: $a>0$ if $a \in \mathbb{P} ; a \geqslant 0$ if $a \in \mathbb{P} \cup\{0\}$

$$
a<0 \text { if }-a \in \mathbb{P} ; a \leqslant 0 \text { if }-a \in \mathbb{P} \cup\{0\}
$$

Define: $a>b$ if $a-b \in \mathbb{P}$

$$
a \geqslant b \text { if } a-b \in \mathbb{P} \cup\{0\}
$$

Prop: (Rules of inequalities) Let $a \cdot b, c \in \mathbb{R}$.
(a) $a>b$ and $b>c \Rightarrow a>c$
(b) $a>b \Rightarrow a+c>b+c$
(c) $a>b \Rightarrow \begin{cases}a c>b c & \text { if } c>0 \\ a c<b c & \text { if } c<0\end{cases}$

Proof: (a) By def", $a>b \Leftrightarrow a-b \in \mathbb{P}$
also $\quad b>c \Leftrightarrow b-c \in \mathbb{P}$
By (01), $\quad a-c=(a-b)+(b-c) \in \mathbb{P} \Rightarrow a>c$.

$$
\begin{array}{ccc}
\substack{1 \\
(A 2) \cdot(A 3) \\
(A 4)} & \mathbb{P} & \mathbb{P} \\
& \mathbb{P}
\end{array}
$$

(b) Exercise.
(c) By def!. $a>b \Leftrightarrow a-b \in \mathbb{P}$.

Given $c>0$. ie. $c \in \mathbb{P}$. then by (01)

$$
a c-b c \stackrel{(\mathbb{D})}{=}(a-b) \cdot \underset{\sim}{(} \in \mathbb{P} \Rightarrow a c>b c .
$$

Exercise for the case $c<0$. \qquad 0

Tum 1: \mathbb{P} contains all natural numbers, ie $\mathbb{N} \subset \mathbb{P}$
Lemma: $a^{2} \geqslant 0 \quad \forall a \in \mathbb{R}$.
Proof: By (02), there are 3 possible cases:
Case 1: $\quad a \in P$

$$
a^{2}=\underset{\substack{\hat{P}}}{a \cdot a} \underset{\mathbb{P}}{(01)} \in \mathbb{P} \quad \text { so } a^{2} \geqslant 0
$$

Case 2: $\quad a=0$

$$
a^{2}=0 \cdot 0=0 \text { so } a^{2} \geqslant 0
$$

Case 3: $-\boldsymbol{a} \in \mathbb{P}$

$$
a^{2} \stackrel{E x}{=}(-a)^{2}=(-a) \cdot(-a)^{\text {(os) }} \in \mathbb{P} \text { so } a^{2} \geqslant 0 \text {. }
$$

Proof of Thu 1 : Use M.I. to show $n \in \mathbb{P} \quad \forall n \in \mathbb{N}$.
$n=1: \quad 1=1 \cdot 1=1^{2} \geqslant 0$ and $1 \neq 0($ by $(M 3))$

$$
\text { So. } 1 \in \mathbb{P}
$$

Assume $n=k$ is true, is. $k \in \mathbb{P}$.
Then $k+1 \in \mathbb{P}$ by (01), so $n=k+1$ is true.

Thu 2: $0 \leqslant a<\varepsilon \quad \forall \varepsilon>0 \Rightarrow a=0$.
(ie. there is no "smallest" positive real number.)
Proof: By Contradiction. Suppose $a \neq 0$, then $a>0$.
Note that $\frac{1}{2}>0$ [why? If not, then $-\frac{1}{2}>0$

$$
\left.\Rightarrow\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)=-1{\underset{L}{>}}_{(01)}^{>}\right]
$$

By (01). $\frac{1}{2} \cdot a \stackrel{\mathbb{L}}{\mathbb{L}} \in \mathbb{P}$, ie. $\frac{1}{2} a>0$.
False. (Ex: why?)
Choose $\varepsilon=\frac{1}{2} a>0$, by assumption. $a<\frac{1}{2} a$ -

Prop: (1) $a b>0 \Rightarrow$ either $a>0$ and $b>0$ or $a<0$ and $b<0$.
(2) $a b<0 \Rightarrow$ ether $a>0$ and $b<0$ or $a<0$ and $b>0$.

Pf: Exercise.

