
 

MATH 2050 Field and order properties of B

Reference Bartle 2.1

Grand Thm IR is a complete ordered field

analysis inequalities algebra
Field Properties topology
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Note The remaining algebraic properties can be deduced from

the field properties above
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Cor The zero element 0 in A3 is unique
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Exercise 1 in 1m37 is unique

Exercise The additive and multiplicative inverse in AIL

and M4 are unique
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Goal IR is a complete ordered field
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Def'll 1hm I t IP positive real numbers E B s t
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Thin 2 O s a E V E so a 0

i e there is no smallest positive real number
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