MATH 2050 - Field and order properties of IR (Reference: Bartle § 2.1)

Grand Thm:
$$\mathbb{R}$$
 is a complete ordered field.
Field Properties (topology)
Def:/Thm: (\mathbb{R} , \dagger , \cdot) is a field, i.e.
 \exists two operations $\dagger: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ st.
the following properties hold:
(A1) $a+b=b+a$ $\forall a.b \in \mathbb{R}$
(A2) $(a+b)+c = a + (b+c)$ $\forall a.b, c \in \mathbb{R}$
(A3) $\exists 0 \in \mathbb{R}$ st. $0+a = a = a+0$ $\forall a \in \mathbb{R}$
(A4) $\forall a \in \mathbb{R}$, $\exists -a \in \mathbb{R}$ st. $a+(-a) = 0 = (-a)+a$.
(M1) $a \cdot b = b \cdot a$ $\forall a.b \in \mathbb{R}$
(M2) $(a.b) \cdot c = a \cdot (b \cdot c)$ $\forall a.b, c \in \mathbb{R}$
(M3) $\exists 1 \in \mathbb{R}$ st. $1 \neq 0$ and $1 \cdot a = a = a \cdot 1$ $\forall a \in \mathbb{R}$
(M4) $\forall a \in \mathbb{R}$, $a \neq 0$, $\exists \frac{1}{a} \in \mathbb{R}$ st. $\frac{1}{a} \cdot a = 1 = a \cdot \frac{1}{a}$ $\forall a \in \mathbb{R}$
(M4) $\forall a \in \mathbb{R}$, $a \neq 0$, $\exists \frac{1}{a} \in \mathbb{R}$ st. $\frac{1}{a} \cdot a = 1 = a \cdot \frac{1}{a}$ $\forall a \in \mathbb{R}$
(M4) $\forall a \in \mathbb{R}$, $a \neq 0$, $\exists \frac{1}{a} \in \mathbb{R}$ st. $\frac{1}{a} \cdot a = 1 = a \cdot \frac{1}{a}$ $\forall a \in \mathbb{R}$
(M4) $\forall a \in \mathbb{R}$, $a \neq 0$, $\exists \frac{1}{a} \in \mathbb{R}$ st. $\frac{1}{a} \cdot a = 1 = a \cdot \frac{1}{a}$ $\forall a \in \mathbb{R}$
($(b+c) \cdot a = b \cdot a + c \cdot a$ $\forall a.b, c \in \mathbb{R}$

Note: The remaining algebraic properties can be deduced from the field properties above.

lotatis	$a^n := a \cdot a \cdot \cdots a$	$; a^{\circ} := 1 ; a^{-1} := \frac{1}{a}$	
	n times ne N		
rop:	"Cancellation Laws"		
(1)	$a+c = b+c \implies c$	a = b	
(2)	ac = bc , Cto	=> a=b	
wf:	(1)	· · ×	-
a	= a + O	(by (A3)) a+c=b+c	
	= a + (c + (-c))	(by (A4)) $a+(c+(-c))=b+$	(C +
	= (a+c) + (-c)	(by (AZ)) (by (AZ))	
	= (b+c) + (-c)	(by assumption)	
	= b+ (c+(-c))	(by (A2))	
	= b + 0	(by (A4))	
	= b	(by (A3))	
): E	x c I CISE .		

<u>Proof</u>: Suppose there are two zero elements O, O'. Then 0 = 0 + 0' = 0' i.e. 0 = 0'o' (A3) 0 (A3)

Exercise: 1 in (M3) is unique.

Exercise: The additive and multiplicative inverse in (A4) and (M4) are unique. Prop: (1) $0 \cdot a = 0$ $\forall a \in \mathbb{R}$ (2) $a \cdot b = 0 \Rightarrow a = 0$ or b = 0 (or both) (3) (-1)·a = -a ∀a∈ R Proof: (1) Consider $0 \cdot a + 0 \cdot a \stackrel{(0)}{=} (0 + 0) \cdot a \stackrel{(A3)}{=} 0 \cdot a \stackrel{(A3)}{=} 0 \cdot a + 0$ then by concellation law (1), we have 0.a = 0. (2) Suppose a.b= 0. Case i : a = 0 => Done. Case ii : a = 0 [Want : Prove b=0.] Since Q = 0, the inverse a E R exists. $\alpha \cdot b = 0 = \alpha \cdot 0$ $f \qquad by (1)$ by assumption By concellation law (2), we have b=0. (3) Want to show: $a + (-1) \cdot a = 0$ Them, result follows from uniqueness of additive inverse "-a". (M_{3}) $(A + (-1) \cdot A = 1 \cdot A + (-1) \cdot A$ $\stackrel{(0)}{=}$ (1 + (-1)) · a $\stackrel{(A4)}{=} 0 \cdot a \stackrel{by(s)}{=} 0$ Remark: Other e.g. of fields Q, C, Zp, { polynomials }

Goal: IR is a complete ordered field.
Ordering
$$\longrightarrow \mathbb{R}$$
 as a real line $\stackrel{P}{\longrightarrow a \ b} \mathbb{R}$
 $\underline{Def^{a}/Thm}: \exists \Phi \ddagger P := \int^{a} positive^{a} real numbers f \in IR st.$
(o1): $a, b \in IP \Rightarrow a + b, ab \in P$
(o2): Trickotomy : $\forall a \in R$, one and only one of the following holds:
 $a \in IP$ or $a = 0$ or $-a \in IP$
Notation: $a > 0$ if $a \in IP$: $a \ge 0$ if $a \in P \cup \{o\}$
 $a < 0$ if $-a \in IP$; $a \ge 0$ if $a \in P \cup \{o\}$
 $Define: a > b$ if $a - b \in IP$
 $a \ge b$ if $a - b \in IP$
 $a \ge b$ if $a - b \in IP \cup \{o\}$
 $Prop: (Rules of inequalities) Let $a \cdot b \cdot c \in R$.
(a) $a > b$ and $b > c \Rightarrow a > c$
(b) $a > b \Rightarrow a + c > b + c$.
(c) $a > b \Rightarrow f a - b t = 0$
 $Prof = (a) By def^{a}, a > b < \Rightarrow a - b \in P$
 $a(so b > c < b b - c \in IP$
 $By (o1), a - c = (a - b) + (b - c) \in IP \Rightarrow a > c$.
 $(a2, ba) \stackrel{P}{P}$ $\stackrel{P}{P}$$

(b) Exercise.

(c) By def²,
$$a > b < \Rightarrow a - b \in iP$$
.
Given $C > 0$, ie. $C \in iP$, then by (01)
 $ac - bc \stackrel{(0)}{=} (a - b) \cdot C \in P \Rightarrow ac > bc$.
 $p \stackrel{(0)}{p}$
Exercise for the case $c < 0$.
Then 1: IP contains all natural numbers, i.e. IN C IP
Lemma: $a^2 \ge 0$ $\forall a \in iR$.
Proof: By (02) there are 3 possible cases:
Case 1: $a \in P$
 $a^2 = a \cdot a \in P$ so $a^2 \ge 0$.
 $p \stackrel{(02)}{p}$
Case 2: $a = 0$
 $a^3 = 0 \cdot 0 = 0$ so $a^2 \ge 0$.
Case 3: $-a \in P$

$$Q^{2} \stackrel{\text{fer.}}{=} (-a)^{2} = (-a) \cdot (-a) \stackrel{(01)}{\in} P \qquad 55 \qquad a^{2} \ge 0.$$

 $\frac{\text{Proof of Thm 1}: \text{ Use M.I. to show } n \in \mathbb{P} \quad \forall n \in \mathbb{N} .$ $\underline{n=1}: \quad 1 = 1 \cdot 1 = 1^2 \neq 0 \quad \text{and} \quad 1 \neq 0 \quad (by (MB)).$ So, $1 \in \mathbb{P}$ Assume n = k is true, i.e. $k \in \mathbb{P}$.
Then $k+1 \in \mathbb{P}$ by (01), so n = k+1 is true. $\mathbb{P}^n \quad \mathbb{P}$

Thm 2: $0 \le a < \varepsilon \quad \forall \varepsilon > 0 \implies a = 0$.

(i.e. there is no "smallest" positive real number.)

Proof: By Contradiction. Suppose a=0, then a>0. Note that $\frac{1}{2} > 0$ [why? If not, then $-\frac{1}{2} > 0$ $\Rightarrow (-\frac{1}{2}) + (-\frac{1}{2}) = -1 \stackrel{(o1)}{\underset{r}{2}} = -1 \stackrel{(o1)}{\underset{r$ False . (Ex: why?) Choose $E = \frac{1}{2}a > 0$, by assumption $a < \frac{1}{2}a$ either a >0 and b >0 Prop: (1) ab > 0 => or aco and beo. (2) ab < 0 => erther a>0 and b<0

or aco and boo.

Pf: Exercise.